

May 9, 2013

Underground Mine Energy Audits A Case Study

by Andy Mork, PG CHG

- Outline energy audit process
- Summarize case study
- Show example Energy Conservation Measures (ECMs)

Organizational Benefits

- Identify energy use patterns/relationship to production
- Baseline information
 - Carbon footprint
 - Greenhouse Gas (GHG) tracking
- Consolidation of operator knowledge

Economic Benefits

- Energy conservation measures (ECMs)
- Optimize mining and milling operations

= Lower Production Costs

Establish Key Metric for Your Mine:

Energy density for mining processes

kWHr/Ton or mJ/Ton

Phase I – Broad analysis of energy use

- Identify major energy-consuming systems
- Quantify energy use by system
- Compare systems to rank energy consumption

Owner Responsibility

- Provide at least one years utility bills
- Provide production data for same year
- Schedule key mine personnel
- Arrange site walk-through logistics

Consultant Responsibilities

- Assemble qualified, MSHA safety-trained team
- Team members:
 - Utility rate analyst
 - Electrical engineer with mining experience
 - Electrical system studies engineer
 - Project Manager
- Respect Miners time, obey safety regulations

Typical Scope and Schedule

Phase I Energy Audit Case Study Organization/Rate Analysis

Step 1. Organization – Owners Tasks

Collect utility bills and production data

Consultant performs rate analysis

- Schedule mine staff
 - Technical Leads; electrical and operations
 - Mine Safety rep for Safety Briefing
 - Identify Mine/Mill Tour Guides
- Collect One-Lines and Long Sections

Step 2a. Initial On-Site Meeting

- Process Overview
- Rate Analysis Results
- Mine Safety briefing
- Q and A

	• • •
Acet # G C 98130 97835 ^{1/3} 98130 97835 ^{1/3}	ENERGY FLOW -> MASS OPERATIONS TOUR TO Somece L Entremat Marc Cass · VENTILATION - AIR - COOL · DEWATERING - WATER - RUMP COURT BUT TO MARC
98130 97835 98130 97835 98130 97835 98130 97835 ½	 HOISTING - FROM SHAFT - CORRECT CONVENCE - COB MILL PROCESSING - CRUSHING GRINDWCK FLOTATION COMPRESSED AIR - FLOTATION
97836 97836	·HEATING (NAT. GAS)

Step 2b. Site Reconnaissance Mine and Mill Tour

Hoists

Step 2b. Site Reconnaissance Mine and Mill Tour

Dewatering Systems

Step 2b. Site Reconnaissance Mine and Mill Tour

Air Compression and Distribution

Step 2b. Site Reconnaissance Mine and Mill Tour

Ventilation

Step 2b. Site Reconnaissance Mine and Mill Tour

Mill Processes

Step 2b. Site Reconnaissance Mine and Mill Tour

Power Supply

Step 2c. Site Reconn – Close-Out Meeting

- Mine Staff
 - Technical Leads
 - Management
- Present Preliminary Findings
 - Energy Systems Overview
 - ECMs
- Q and A

Phase I Energy Audit Case Study Reporting

Step 3. Reporting

- Rate Analysis
- Energy Distribution by System
- Power Quality Study if data readily available
- ECMs and Cost Savings Detail
- Recommendations for Phase II Audit

Phase I Energy Audit Case Study Report: Rate Analysis

Step 3. Report – Rate Analysis

- Examine gas and electricity contracts
- Chart usage for period of record
- Compares usage per ton production

Phase I Energy Audit Case Study Report: Energy Distribution by System

Focus Phase II on:

- Air compression
- Downshaft

Phase I Energy Audit Case Study Report: Power Quality Study

Phase I Energy Audit Case Study Report: Power Quality Study

Low Power Quality Implications

- Inefficient motor function
- Higher heat loads
- Shorter operational life
- Increased maintenance/replacement costs

Typical ECMs - Air Compression Systems Energy losses due to:

- Leaks
- Lack of valving to isolate unoccupied levels
- Old or inefficient compressors

ECM Demonstration: Air Leak Losses

<u>Leak Dia.</u>	<u>CFM Loss</u>	<u>CF/YR Loss</u>
1/64"	0.41	212,809
1/32"	1.55	849,139
1/16"	6.5	3,401,798
1/8"	26	13,628,160
1/4"	104	54,628,160
3/8"	234	122,653,440
1/2"	415	217,526,400

Source:

http://www.reliabilityweb.com/excerpts/excerpts/Lets%20Talk%20About%20Compressed%20Air%20Leakage.pdf

ECM Demonstration: Air Leak Loss Cost Estimate¹

- Est. Leak Size 1/32" (1.55 CFM @ 100 psi)
- Cost for one leak = \$163/year (@ \$0.20/1,000 cfm)
- Annual Cost of 1,000 leaks = **\$163,000/year**
- Cost for one leak 1/16" = \$663/year (@ \$0.20/1,000 cfm)
- 1,000 Leaks @ 1/16" = \$663,000/year

Note: 1. Costs will vary depending on electrical rate

ECM Demonstration: Motor Operation

Alternative cost comparisons¹

- Variable frequency drives
- Soft starters on large induction loads

Note: 1. Could be proposed as part of Phase II scope

ECM Demonstration: Lighting

- 75 Watts incandescent vs
- 15 Watts per CFL
- 2,000 bulbs @ 8,760 hrs
- Savings \$52,000/year (will vary with electrical rates)
- Incandescent life span 750 1,000 hours
- CFL life span 6,000 15,000 hours
- Labor costs savings for CFL vs. incandescent replacements—significant!

Phase I Energy Audit Case Study Closing Thoughts

- Mines on grid: May consider using renewable energy generation sources
- Mines off grid: May consider using more efficient conventional or renewable energy generation sources

Questions?

Andy Mork, PG, CHG

208.288.6296

Andy.Mork@powereng.com

www.powereng.com

